RééDOC
75 Boulevard Lobau
54042 NANCY cedex

Christelle Grandidier Documentaliste
03 83 52 67 64


F Nous contacter

0

Article

--";3! O
     

-A +A

Neurophysiological correlates of age-related changes in human motor function

MATTAY VS; FERA F; TESSITORE A
NEUROLOGY , 2002, vol. 58, n° 4, p. 630-635
Doc n°: 103861
Localisation : Documentation IRR
Descripteurs : AA - GENERALITES - SYSTEME NEUROMUSCULAIRE

There are well-defined and characteristic age-related deficits in motor abilities that may reflect structural and chemical changes in the aging brain. OBJECTIVE: To delineate age-related changes in the physiology of brain systems subserving simple motor behavior. METHODS: Ten strongly right-handed young (<35 years of age) and 12 strongly right-handed elderly (>50 years of age) subjects with no evidence of cognitive or motor deficits participated in the study. Whole-brain functional imaging was performed on a 1.5-T MRI scanner using a spiral pulse sequence while the subjects performed a visually paced "button-press" motor task with their dominant right hand alternating with a rest state. RESULTS: Although the groups did not differ in accuracy, there was an increase in reaction time in the elderly subjects (mean score plus minus SD, young subjects = 547 +/- 97 ms, elderly subjects = 794 +/- 280 ms, p < 0.03). There was a greater extent of activation in the contralateral sensorimotor cortex, lateral premotor area, supplementary motor area, and ipsilateral cerebellum in the elderly subjects relative to the young subjects (p < 0.001). Additional areas of activation, absent in the young subjects, were seen in the ipsilateral sensorimotor cortex, putamen (left > right), and contralateral cerebellum of the elderly subjects. CONCLUSIONS: The results of this study show that elderly subjects recruit additional cortical and subcortical areas even for the performance of a simple motor task. These changes may represent compensatory mechanisms invoked by the aging brain, such as reorganization and redistribution of functional networks to compensate for age-related structural and neurochemical changes.

Langue : ANGLAIS

Tiré à part : OUI

Identifiant basis : 2002219833

Mes paniers

4

Gerer mes paniers

0